Retrograde Control of Synaptic Transmission by Postsynaptic CaMKII at the Drosophila Neuromuscular Junction
نویسندگان
چکیده
Retrograde signaling plays an important role in synaptic homeostasis, growth, and plasticity. A retrograde signal at the neuromuscular junction (NMJ) of Drosophila controls the homeostasis of neurotransmitter release. Here, we show that this retrograde signal is regulated by the postsynaptic activity of Ca2+/calmodulin-dependent protein kinase II (CaMKII). Reducing CaMKII activity in muscles enhances the signal and increases neurotransmitter release, while constitutive activation of CaMKII in muscles inhibits the signal and decreases neurotransmitter release. Postsynaptic inhibition of CaMKII increases the number of presynaptic, vesicle-associated T bars at the active zones. Consistently, we show that glutamate receptor mutants also have a higher number of T bars; this increase is suppressed by postsynaptic activation of CaMKII. Furthermore, we demonstrate that presynaptic BMP receptor wishful thinking is required for the retrograde signal to function. Our results indicate that CaMKII plays a key role in the retrograde control of homeostasis of synaptic transmission at the NMJ of Drosophila.
منابع مشابه
Synaptic strengthening mediated by bone morphogenetic protein-dependent retrograde signaling in the Drosophila CNS.
Retrograde signaling is an essential component of synaptic development and physiology. Previous studies show that bone morphogenetic protein (BMP)-dependent retrograde signaling is required for the proper development of the neuromuscular junction (NMJ) in Drosophila. These studies, moreover, raised the significant possibility that the development of central motor circuitry might similarly be re...
متن کاملTOR Is Required for the Retrograde Regulation of Synaptic Homeostasis at the Drosophila Neuromuscular Junction
Homeostatic mechanisms operate to stabilize synaptic function; however, we know little about how they are regulated. Exploiting Drosophila genetics, we have uncovered a critical role for the target of rapamycin (TOR) in the regulation of synaptic homeostasis at the Drosophila larval neuromuscular junction. Loss of postsynaptic TOR disrupts a retrograde compensatory enhancement in neurotransmitt...
متن کاملInput-Specific Plasticity and Homeostasis at the Drosophila Larval Neuromuscular Junction
Synaptic connections undergo activity-dependent plasticity during development and learning, as well as homeostatic re-adjustment to ensure stability. Little is known about the relationship between these processes, particularly in vivo. We addressed this with novel quantal resolution imaging of transmission during locomotive behavior at glutamatergic synapses of the Drosophila larval neuromuscul...
متن کاملPostsynaptic Mad Signaling at the Drosophila Neuromuscular Junction
BACKGROUND Cell-to-cell communication at the synapse involves synaptic transmission as well as signaling mediated by growth factors, which provide developmental and plasticity cues. There is evidence that a retrograde, presynaptic transforming growth factor-beta (TGF-beta) signaling event regulates synapse development and function in Drosophila. RESULTS Here we show that a postsynaptic TGF-be...
متن کاملProdomain Removal Enables Neto to Stabilize Glutamate Receptors at the Drosophila Neuromuscular Junction
Stabilization of neurotransmitter receptors at postsynaptic specializations is a key step in the assembly of functional synapses. Drosophila Neto (Neuropillin and Tolloid-like protein) is an essential auxiliary subunit of ionotropic glutamate receptor (iGluR) complexes required for the iGluRs clustering at the neuromuscular junction (NMJ). Here we show that optimal levels of Neto are crucial fo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Neuron
دوره 39 شماره
صفحات -
تاریخ انتشار 2003